A STABILITY ANALYSIS OF THE PERFECTLY MATCHED LAYER METHOD

S. Joe Yakura, David Dietz, Andy Greenwood, and Ernest Baca

12 November 1999

Final Report

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

20000314 020

AIR FORCE RESEARCH LABORATORY
Directed Energy Directorate
3550 Aberdeen Ave SE
AIR FORCE MATERIEL COMMAND
KIRTLAND AIR FORCE BASE, NM 87117-5776

AFRL-DE-TR-1999-1090

Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data, does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report has been reviewed by the Public Affairs Office and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nationals.

If you change your address, wish to be removed from this mailing list, or your organization no longer employs the addressee, please notify AFRL/DEPE, 3550 Aberdeen Ave SE, Kirtland AFB, NM 87117-5776.

Do not return copies of this report unless contractual obligations or notice on a specific document requires its return.

This report has been approved for publication.

AKURA/DR-III. (GS-14)

FOR THE COMMANDER

ORGE E. BERAUN, DR-IV, (GS-15)

Chief, DE Effects Research Branch

R. EARL GOOD, SES

Director, Directed Energy Directorate

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 074-0188	
Public reporting burden for this collection of informa the data needed, and completing and reviewing this reducing this burden to Washington Headquarters a Management and Budget, Paperwork Reduction P	s collection of information. Send comments rega Services, Directorate for Information Operations roject (0704-0188), Washington, DC 20503	arding this burden estimate or any other	ctions, searching ex	xisting data sources, gathering and maintaining	
1. AGENCY USE ONLY (Leave blank	2. REPORT DATE	3. REPORT TYPE AND D			
A TITLE AND CURTITUE	<u> 12 November 1999</u>	Final; 1 July 1999 – 12			
4. TITLE AND SUBTITLE A Stability Analysis of the Parfect	by Mataland I muon Mathad	1	5. FUNDING N	IUMBERS	
A Stability Analysis of the Perfect	iy Matchea Layer Methoa		PE: 62601F		
			PR: 5797		
		1	TA: AL		
6. AUTHOR(S)		1	WW:03		
S. Joe Yakura, David Dietz, Andy	Greenwood, and Ernest Baca		, w. 65		
7. PERFORMING ORGANIZATION NA	AME(S) AND ADDRESS(ES)	8	B. PERFORMIN	G ORGANIZATION	
4' F. D. 171			REPORT NU	MBER	
Air Force Research Laboratory					
Directed Energy Directorate (AFRL/DEPE)		l A	<i>NFRL-DE-TR</i>	-1999-1090	
3550 Aberdeen Ave SE					
Kirtland Air Force Base, NM 871	17 5776				
9. SPONSORING / MONITORING AC	SENCY NAME(S) AND ADDRESS(E	S) 1		NG / MONITORING PEPORT NUMBER	
11. SUPPLEMENTARY NOTES					
12a. DISTRIBUTION / AVAILABILITY	STATEMENT		···	12b. DISTRIBUTION CODE	
Approved for public release; distribut	ion is unlimited.				
13. ABSTRACT (Maximum 200 Word	is)	***************************************	·····		
We perform a detailed stability as shows that it is essential to have trafield gradients, the PML method be	ansverse field gradients present a	at all times to stabilize PM	L calculation	s. In the absence of transverse	
14. SUBJECT TERMS	The state of the s		Т.	15. NUMBER OF PAGES	
Computational Electromagnetics, Numerical Analysis]	15. NUMBER OF PAGES 16	
Ziecoromagnettes, I	Tomber tout Titul yold			16. PRICE CODE	
	8. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICA	ATION	20. LIMITATION OF ABSTRACT	
OF REPORT	OF THIS PAGE	OF ABSTRACT		Unlimited	
unclassified	unclassified	unclassified			
NSN 7540-01-280-5500			Stan	dard Form 298 (Rev. 2-89)	

ii

TABLE OF CONTENTS

	<u>P</u>	<u>AGE</u>
Abstra	act	1
I.	INTRODUCTION	1
II.	MAXWELL'S EQUATIONS INSIDE PML	1
II.A	TRANSVERSE MAGNETIC (TM _Z) WAVES	2
II.B	TRANSVERSE ELECTRIC (TE _Z) WAVES	4
III.	STABILITY ANALYSIS FOR A UNIAXIAL PML MEDIUM	4
IV.	EXTENDING THE STABILITY ANALYSIS TO CORNER REGIONS	5
V.	CONCLUSIONS	7
REFE	RENCES	7
APPE	NDIX A	7
APPE	NDIX B	8

iv

A Stability Analysis of the Perfectly Matched Layer Method

S. Joe Yakura, David Dietz, Andy Greenwood and Ernest Baca

Air Force Research Laboratory, Directed Energy Directorate, Kirtland AFB, New Mexico 87117

Abstract

We perform a detailed stability analysis based on the unsplit-field uniaxial perfectly matched layer (PML) formulation. Our finding shows that it is essential to have transverse field gradients present at all times to stabilize PML calculations. In the absence of transverse field gradients, the PML method becomes unstable with the axial field components growing linearly in time.

I. INTRODUCTION

Despite the successful implementation of the perfectly matched layer (PML) method to absorb outgoing waves at the artificial boundaries of a bounded numerical volume, the question of the stability of the PML method remains [1,2,3]. Abarbanel and Gottlieb [1] carried out a detailed stability analysis of Berenger's split-field PML formulation [4], and they concluded that the split-field PML equations are not mathematically strongly well-posed. Hence, these equations result in unstable field components that diverge linearly in time.

In this paper we present a stability analysis starting with the unsplit-field uniaxial PML formulation [5,6], and derive a stability condition for the simple, nondispersive PML equations. The analysis shows that in rare instances the PML method results in an unstable condition. However, for PML parameter values used in most practical applications, the PML method is stable.

II. MAXWELL'S EQUATIONS INSIDE PML

For a plane wave propagating in the arbitrary x-y direction into a uniaxial anisotropic medium, the 2-D PML equations in the frequency (ω) domain are given by [5,6]

$$\underline{\nabla} x \underline{H}(\omega; x, y) = j\omega \epsilon_0 \epsilon_R S^{PML}(\omega; x) \underline{E}(\omega; x, y), \qquad (II.1)$$

$$\underline{\nabla} x \underline{\mathbf{E}}(\omega; \mathbf{x}, \mathbf{y}) = -\mathbf{j} \omega \mu_0 \mu_R \mathbf{S}^{PML}(\omega; \mathbf{x}) \underline{\mathbf{H}}(\omega; \mathbf{x}, \mathbf{y}), \tag{II.2}$$

where $\underline{E}(\omega;x,y)$, $\underline{H}(\omega;x,y)$, ε_0 , ε_R , μ_0 , μ_R and $S^{PML}(\omega)$ are the electric field vector, the magnetic field vector, the free-space permittivity, the relative permittivity, the free-space permeability, the relative permeability and the uniaxial anisotropic PML tensor, respectively. Elements of the uniaxial anisotropic PML tensor, $S^{PML}(\omega)$, are given by

$$S^{PML}(\omega) = \begin{pmatrix} \frac{1}{S_{x}(\omega)} & 0 & 0\\ 0 & S_{x}(\omega) & 0\\ 0 & 0 & S_{x}(\omega) \end{pmatrix},$$
(II.3)

where $S_x(\omega)$ is an arbitrarily defined ω and x dependent function. It is a common practice in the FDTD community to choose $S_x(\omega)$ in the form

$$S_{x}(\omega) = 1 + \frac{\sigma_{x}}{j\omega\varepsilon_{0}\varepsilon_{R}} \quad \text{with} \quad \frac{\sigma_{x}}{\varepsilon_{0}\varepsilon_{R}} = \frac{\sigma_{x}^{*}}{\mu_{0}\mu_{R}}$$
 (II.4)

for the PML matching condition. The quantities σ_x and σ_x^* represent electric and magnetic conductivities arbitrarily introduced in order to implement the PML method.

Since Maxwell's equations in 2-D decompose into transverse magnetic (TM_z) and transverse electric (TE_z) waves, these waves are considered separately in the stability analysis.

II.A TRANSVERSE MAGNETIC (TMz) WAVE

For TM_z waves, Eqs. (II.1) through (II.4) reduce to the following three equations for three field components $H_x(\omega;x,y)$, $H_y(\omega;x,y)$ and $E_z(\omega;x,y)$:

$$\left[\underline{\nabla} x \underline{H}(\omega; x, y)\right]_{z} = j\omega \varepsilon_{0} \varepsilon_{R} \left(1 + \frac{\sigma_{x}}{j\omega \varepsilon_{0} \varepsilon_{R}}\right) E_{z}(\omega; x, y), \qquad (II.5)$$

$$\left[\underline{\nabla} \times \underline{E}(\omega; \mathbf{x}, \mathbf{y})\right]_{\mathbf{x}} = \frac{-\mathrm{j}\omega\mu_0\mu_R}{(1 + \frac{\sigma_{\mathbf{x}}}{\mathrm{j}\omega\varepsilon_0\varepsilon_R})} \mathbf{H}_{\mathbf{x}}(\omega; \mathbf{x}, \mathbf{y}), \tag{II.6}$$

$$\left[\underline{\nabla} x \underline{E}(\omega; x, y)\right]_{y} = -j\omega\mu_{0}\mu_{R} \left(1 + \frac{\sigma_{x}}{j\omega\epsilon_{0}\epsilon_{R}}\right) H_{y}(\omega; x, y). \tag{II.7}$$

Taking the inverse Fourier transform of the above equations results in the following time-dependent forms:

$$\frac{\partial E_{z}(t; x, y)}{\partial t} + \frac{\sigma_{x}}{\varepsilon_{0}\varepsilon_{R}} E_{z}(t; x, y) + \frac{1}{\varepsilon_{0}\varepsilon_{R}} \frac{\partial H_{x}(t; x, y)}{\partial y} - \frac{1}{\varepsilon_{0}\varepsilon_{R}} \frac{\partial H_{y}(t; x, y)}{\partial x} = 0, \quad (II.8)$$

$$\frac{\partial \mathbf{H}_{x}(t;x,y)}{\partial t} - \frac{\sigma_{x}}{\varepsilon_{0}\varepsilon_{R}} \mathbf{H}_{x}(t;x,y) + \left(\frac{\sigma_{x}}{\varepsilon_{0}\varepsilon_{R}}\right)^{2} V_{x}^{H}(t;x,y) + \frac{1}{\mu_{0}\mu_{R}} \frac{\partial E_{z}(t;x,y)}{\partial y} = 0, \quad (II.9)$$

$$\frac{\partial V_x^H(t;x,y)}{\partial t} + \frac{\sigma_x}{\epsilon_0 \epsilon_R} V_x^H(t;x,y) - H_x(t;x,y) = 0, \qquad (II.10)$$

$$\frac{\partial H_{y}(t; x, y)}{\partial t} + \frac{\sigma_{x}}{\varepsilon_{0} \varepsilon_{R}} H_{y}(t; x, y) - \frac{1}{\mu_{0} \mu_{R}} \frac{\partial E_{z}(t; x, y)}{\partial x} = 0.$$
 (II.11)

In the above, the first order time-dependent equation [Eq. (II.10)] for $V_x^H(t;x,y)$ is introduced to handle the delayed time-response of $H_x(t;x,y)$. This equation follows naturally from the inverse Fourier transform of $H_x(\omega;x,y)$ when $V_x^H(t;x,y)$ is defined in the following integral form:

$$V_{x}^{H}(t; x, y) = \int_{0}^{t} H_{x}(t'; x, y) \exp[-(\frac{\sigma_{x}}{\varepsilon_{0}\varepsilon_{R}})(t - t')] dt'.$$
 (II.12)

Casting Eqs. (II.8) through (II.11) into a more compact form results in

$$\frac{\partial \underline{W}^{TM}}{\partial t} + \underline{\underline{A}}^{TM} \bullet \underline{W}^{TM} + \underline{\underline{B}}^{TM} \bullet \frac{\partial \underline{W}^{TM}}{\partial x} + \underline{\underline{C}}^{TM} \bullet \frac{\partial \underline{W}^{TM}}{\partial y} = 0, \qquad (II.13)$$

where $\underline{W}^{TM} = \{E_z(t;x,y), H_x(t;x,y), V_x^H(t;x,y), H_y(t;x,y)\}^T$, • is used to denote matrix multiplication, and matrix coefficients $\underline{\underline{A}}^{TM}$, $\underline{\underline{B}}^{TM}$ and $\underline{\underline{C}}^{TM}$ are given by

$$\underline{\underline{A}}^{TM} = \begin{pmatrix} \frac{\sigma_{\chi}}{\varepsilon_0 \varepsilon_R} & 0 & 0 & 0 \\ 0 & \frac{-\sigma_{\chi}}{\varepsilon_0 \varepsilon_R} \left(\frac{\sigma_{\chi}}{\varepsilon_0 \varepsilon_R}\right)^2 & 0 \\ 0 & -1 & \frac{\sigma}{\varepsilon_0 \varepsilon_R} & 0 \\ 0 & 0 & 0 & \frac{\sigma_{\chi}}{\varepsilon_0 \varepsilon_R} \end{pmatrix}, \quad (II.14)$$

To carryout the stability analysis of Eq. (II.13), the Laplace transform is performed in the time domain and the Fourier transform in the spatial domain. The Laplace and Fourier transform function $\underline{\hat{W}}^{TM}(s;k_x,k_y)$ of $\underline{W}^{TM}(t;x,y)$ is defined by

$$\underline{\underline{W}}^{TM}(t;x,y) = \frac{1}{2\pi i} \int_{s_0 - j\infty}^{s_0 + j\infty} \exp(st) ds \frac{1}{(2\pi)^2} \int_{-\infty - \infty}^{\infty} \frac{\hat{\underline{W}}}{TM}(s;k_x,k_y) \exp(jk_x x + jk_y y) dk_x dk_y \text{ with } Re(s) \ge s_0.$$
(II.17)

Upon performing both Laplace and Fourier transforms, Eq. (II.13) becomes

$$\underline{\underline{\Omega}}^{\text{TM}}(s; k_x, k_y) \bullet \underline{\hat{W}}^{\text{TM}}(s; k_x, k_y) = \underline{\hat{W}}^{\text{TM}}(0; k_x, k_y), \tag{II.18}$$

where $\underline{\underline{\Omega}}^{TM}$ (s;k_x,k_y) is the characteristic matrix of the TM_z wave defined by

$$\underline{\underline{\Omega}}^{TM}(s; k_x, k_y) = \begin{pmatrix}
s + \frac{\sigma_x}{\varepsilon_0 \varepsilon_R} & \frac{jk_y}{\varepsilon_0 \varepsilon_R} & 0 & \frac{-jk_x}{\varepsilon_0 \varepsilon_R} \\
\frac{jk_y}{\mu_0 \mu_R} & s - \frac{\sigma_x}{\varepsilon_0 \varepsilon_R} & \left(\frac{\sigma_x}{\varepsilon_0 \varepsilon_R}\right)^2 & 0 \\
0 & -1 & s + \frac{\sigma_x}{\varepsilon_0 \varepsilon_R} & 0 \\
-\frac{jk_x}{\mu_0 \mu_R} & 0 & 0 & s + \frac{\sigma_x}{\varepsilon_0 \varepsilon_R}
\end{pmatrix}.$$
(II.19)

The stability of the system is characterized by investigating the determinant (or equivalently the eigenvalues) of the characteristic matrix $\underline{\underline{\Omega}}^{TM}(s;k_x,k_y)$. The determinant gives the following quartic algebraic equation:

$$s^{2} \left[\left(s + \frac{\sigma_{x}}{\varepsilon_{0} \varepsilon_{R}} \right)^{2} + \frac{\left(k_{x} \right)^{2}}{\varepsilon_{0} \varepsilon_{R} \mu_{0} \mu_{R}} \right] + \left(s + \frac{\sigma_{x}}{\varepsilon_{0} \varepsilon_{R}} \right)^{2} \frac{\left(k_{y} \right)^{2}}{\varepsilon_{0} \varepsilon_{R} \mu_{0} \mu_{R}} = 0.$$
 (II.20)

II.B TRANSVERSE ELECTRIC (TE_z) WAVE

For TE_z waves, Eqs. (II.1) through (II.4) reduce to the following three equations for three field components $H_z(\omega;x,y)$, $E_x(\omega;x,y)$ and $E_y(\omega;x,y)$:

$$\left[\underline{\nabla} \times \underline{E}(\omega; \mathbf{x}, \mathbf{y})\right]_{z} = -j\omega\mu_{0}\mu_{R} \left(1 + \frac{\sigma_{\mathbf{x}}}{j\omega\epsilon_{0}\epsilon_{R}}\right) H_{z}(\omega; \mathbf{x}, \mathbf{y}), \qquad (II.21)$$

$$\left[\underline{\nabla} \, \mathbf{x} \, \underline{\mathbf{H}}(\omega; \mathbf{x}, \mathbf{y})\right]_{\mathbf{x}} = \frac{\mathbf{j} \omega \varepsilon_0 \varepsilon_R}{(1 + \frac{\sigma_{\mathbf{x}}}{\mathbf{j} \omega \varepsilon_0 \varepsilon_R})} E_{\mathbf{x}}(\omega; \mathbf{x}, \mathbf{y}), \tag{II.22}$$

$$\left[\underline{\nabla} x \underline{\mathbf{H}}(\omega; \mathbf{x}, \mathbf{y})\right]_{\mathbf{y}} = \mathbf{j} \omega \varepsilon_0 \varepsilon_R \left(1 + \frac{\sigma_{\mathbf{x}}}{\mathbf{i} \omega \varepsilon_0 \varepsilon_R}\right) E_{\mathbf{y}}(\omega; \mathbf{x}, \mathbf{y}). \tag{II.23}$$

Following the same steps as in the TM_z wave case yields the following equations for the TE_z wave in the Laplace and Fourier domains:

$$\underline{\Omega}^{\text{TE}}(s; k_x, k_y) \bullet \underline{\hat{W}}^{\text{TE}}(s; k_x, k_y) = \underline{\hat{W}}^{\text{TE}}(0; k_x, k_y), \qquad (II.24)$$

where $\underline{\hat{W}}^{TE}(s;k_x,k_y) = \{H_z(s;k_x,k_y), E_x(s;k_x,k_y), V_x^E(s;k_x,k_y), E_y(s;k_x,k_y)\}^T$, and $\underline{\underline{\Omega}}^{TE}(s;k_x,k_y)$ is the characteristic matrix of the TE_z wave defined by

$$\underline{\underline{\Omega}}^{TE}(s; k_x, k_y) = \begin{pmatrix}
s + \frac{\sigma_x}{\varepsilon_0 \varepsilon_R} & -\frac{jk_y}{\mu_0 \mu_R} & 0 & \frac{jk_x}{\mu_0 \mu_R} \\
-\frac{jk_y}{\varepsilon_0 \varepsilon_R} & s - \frac{\sigma_x}{\varepsilon_0 \varepsilon_R} & \left(\frac{\sigma_x}{\varepsilon_0 \varepsilon_R}\right)^2 & 0 \\
0 & -1 & s + \frac{\sigma_x}{\varepsilon_0 \varepsilon_R} & 0 \\
\frac{jk_x}{\varepsilon_0 \varepsilon_R} & 0 & 0 & s + \frac{\sigma_x}{\varepsilon_0 \varepsilon_R}
\end{pmatrix} .$$
(II.25)

Taking the determinant of the characteristic matrix, $\underline{\Omega}^{TE}(s;k_x,k_y)$, gives the following characteristic equation which is exactly the same as in the TM_z wave case:

$$s^{2} \left[\left(s + \frac{\sigma_{x}}{\varepsilon_{0} \varepsilon_{R}} \right)^{2} + \frac{(k_{x})^{2}}{\varepsilon_{0} \varepsilon_{R} \mu_{0} \mu_{R}} \right] + \left(s + \frac{\sigma_{x}}{\varepsilon_{0} \varepsilon_{R}} \right)^{2} \frac{(k_{y})^{2}}{\varepsilon_{0} \varepsilon_{R} \mu_{0} \mu_{R}} = 0.$$
 (II.26)

III. STABILITY ANALYSIS FOR A UNIAXIAL PML MEDIUM

To study Eq. (II.20) [or Eq. (II.26)] we first normalize s, k_x and k_y by setting

$$\frac{s}{\left(\frac{\sigma_{x}}{\varepsilon_{0}\varepsilon_{R}}\right)} \to S, \quad \frac{\left(\frac{\left(k_{x}\right)^{2}}{\varepsilon_{0}\varepsilon_{R}\mu_{0}\mu_{R}}\right)}{\left(\frac{\sigma_{x}}{\varepsilon_{0}\varepsilon_{R}}\right)^{2}} \to \left(K_{x}\right)^{2} \quad \text{and} \quad \frac{\left(\frac{\left(k_{y}\right)^{2}}{\varepsilon_{0}\varepsilon_{R}\mu_{0}\mu_{R}}\right)}{\left(\frac{\sigma_{x}}{\varepsilon_{0}\varepsilon_{R}}\right)^{2}} \to \left(K_{y}\right)^{2}. \tag{III.1-3}$$

Now, Eq. (II.20) [or Eq. (II.26)] results in the following form:

$$S^{2}[(S+1)^{2}+(K_{x})^{2}]+(S+1)^{2}(K_{y})^{2}=0.$$
 (III.4)

From this expression it is immediately apparent that if K_y is zero then two of the four roots are located at S=0 in the complex S-plane, which results in unconditionally unstable behavior that grows linearly with time. These two roots are associated with the axial field component and the delayed time-response function of the axial field component. The other two roots are related to the incoming and outgoing damped transverse waves that propagate as $\exp\left[-(\sigma_x/\epsilon_0\epsilon_R)\,t\pm jk_xx\right]$.

On the other hand, if both K_x and K_y are real numbers then Eq. (III.4) has four complex roots [i.e. two sets of complex conjugate roots], and that the real parts of these roots can be shown to be all negative [see Appendix A]. Thus, all eigenfunctions associated with these eigenvalues are well-behaved and stable.

As seen in Eq. (III.4), the term that contributes to stabilizing the system is the real part of K_y . Physically, this means that the transverse field gradients (in the y-direction for the present analysis) contribute to stabilize axial field (in the x-direction for the present analysis) components as TM_z and TE_z waves propagate into a uniaxial anisotropic PML medium.

Unfortunately, the actual PML system is not typically characterized by real K_x but rather by complex K_x because of the evanescent behavior of the propagating wave into the uniaxial PML medium. To investigate the effect of the imaginary part of K_x on the stability of a system, we solve Eq. (III.4) directly using MATHEMATICA software [7]. The exact expressions for the four complex roots are shown in Appendix B. Calculations show that for $Im\{|K_x|\} >> Re\{|K_x|\}$ it is possible for the real parts of the roots to become positive. However, in usual implementation of the PML method $Im\{|K_x|\} >> Re\{|K_x|\}$ is not normally satisfied; thus, it is unlikely that PML calculations become unstable for practical PML applications.

IV. EXTENDING THE STABILITY ANALYSIS TO CORNER REGIONS

At a corner region of the 2D PML medium, the uniaxial anisotropic PML tensor, $S^{PML}(\omega)$, has to be modified to include contributions in both x and y directions as follows:

$$S^{PML}(\omega) = \begin{pmatrix} \frac{S_{y}(\omega)}{S_{x}(\omega)} & 0 & 0\\ 0 & \frac{S_{x}(\omega)}{S_{y}(\omega)} & 0\\ 0 & 0 & S_{x}(\omega)S_{y}(\omega) \end{pmatrix}, \quad (IV.1)$$

where $S_y(\omega)$ is defined in the same way as $S_x(\omega)$ to take the form

$$S_{y}(\omega) = 1 + \frac{\sigma_{y}}{j\omega\epsilon_{0}\epsilon_{R}}$$
 with $\frac{\sigma_{y}}{\epsilon_{0}\epsilon_{R}} = \frac{\sigma_{y}^{*}}{\mu_{0}\mu_{R}}$. (IV.2)

Using Eqs. (IV.1) in Eqs. (II.1) and (II.2), and following the same steps as in previous sections yields the following equations for the TM_z wave in the Laplace and Fourier domains at the 2D PML corner region:

$$\left(\underline{\underline{\Omega}}^{\text{TM}}(s; k_x, k_y)\right)_{\text{corner}} \bullet \left(\underline{\hat{W}}^{\text{TM}}(s; k_x, k_y)\right)_{\text{corner}} = \left(\underline{\hat{W}}^{\text{TM}}(0; k_x, k_y)\right)_{\text{corner}}, \quad (IV.3)$$

where $(\hat{\mathbf{W}}^{TM}(s;k_x,k_y))_{corner} = \{E_z(s;k_x,k_y), H_x(s;k_x,k_y), V_x^H(s;k_x,k_y), H_y(s;k_x,k_y), V_y^H(s;k_x,k_y)\}^T$, and $(\Omega^{TM}(s;k_x,k_y))_{corner}$ is the characteristic matrix of the TM_z defined by

$$(\underline{\underline{\Omega}}^{TM}(s; k_x, k_y))_{corner} = \begin{pmatrix} \left(s + \frac{\sigma_x + \sigma_y}{\epsilon_0 \epsilon_R} + \frac{jk_y}{\epsilon_0 \epsilon_R}\right) & \frac{jk_y}{\epsilon_0 \epsilon_R} & 0 & \frac{-jk_x}{\epsilon_0 \epsilon_R} & 0 \\ \frac{jk_y}{\mu_0 \mu_R} & s - \frac{\sigma_x - \sigma_y}{\epsilon_0 \epsilon_R} \left(\frac{\sigma_x}{\epsilon_0 \epsilon_R} (\frac{\sigma_x - \sigma_y}{\epsilon_0 \epsilon_R})\right) & 0 & 0 \\ 0 & -1 & s + \frac{\sigma_x}{\epsilon_0 \epsilon_R} & 0 & 0 \\ -\frac{jk_x}{\mu_0 \mu_R} & 0 & 0 & s - \frac{\sigma_y - \sigma_x}{\epsilon_0 \epsilon_R} \left(\frac{\sigma_y}{\epsilon_0 \epsilon_R} (\frac{\sigma_y - \sigma_x}{\epsilon_0 \epsilon_R})\right) \\ 0 & 0 & 0 & -1 & s + \frac{\sigma_y}{\epsilon_0 \epsilon_R} \end{pmatrix}$$

$$(IV.4)$$

Taking the determinant of the characteristic matrix, $(\underline{\Omega}^{TM}(s;k_x,k_y))_{corner}$, gives the following characteristic equation:

$$s \left[\left(s + \frac{\sigma_x}{\epsilon_0 \epsilon_R} \right)^2 \left(s + \frac{\sigma_y}{\epsilon_0 \epsilon_R} \right)^2 + \left(s + \frac{\sigma_y}{\epsilon_0 \epsilon_R} \right)^2 \frac{\left(k_x \right)^2}{\epsilon_0 \epsilon_R \mu_0 \mu_R} + \left(s + \frac{\sigma_x}{\epsilon_0 \epsilon_R} \right)^2 \frac{\left(k_y \right)^2}{\epsilon_0 \epsilon_R \mu_0 \mu_R} \right] = 0.$$
 (IV.5)

As seen in the above equation one root is located at s=0, which gives a stable solution in the time domain, and the other four roots can be obtained by setting the expression inside the square bracket to zero. For real values of k_x and k_y , a procedure similar to that in Appendix A shows the real parts of the four complex roots are always negative, implying stable solutions in the time domain. For arbitrary complex values of k_x and k_y , the real parts of the four complex roots have to be investigated numerically from the exact expressions shown in Appendix B.

For the special case of $\sigma_x = \sigma_y$ the equation formed by setting the expression inside the square bracket to zero can be solved exactly to obtain an analytical expression for the stability condition; in this case the square bracket term reduces to

$$\left(s + \frac{\sigma_{x}}{\varepsilon_{0}\varepsilon_{R}}\right)^{2} \left[\left(s + \frac{\sigma_{x}}{\varepsilon_{0}\varepsilon_{R}}\right)^{2} + \frac{(k_{x})^{2} + (k_{x})^{2}}{\varepsilon_{0}\varepsilon_{R}\mu_{0}\mu_{R}} \right] = 0.$$
(IV.6)

Solving Eq. (IV.6) results in the double root $s=-(\sigma_x/\epsilon_0\epsilon_R)$, which give stable solutions in the time domain, and the other two roots $s=-(\sigma_x/\epsilon_0\epsilon_R)\pm j\{\sqrt{1/(\epsilon_0\epsilon_R\mu_0\mu_R)}\ k\ \}$ where $(k)^2=(k_x)^2+(k_y)^2$. Expressing k in terms of its real and imaginary parts as $k=k^R+jk^I$, the two roots $s=-(\sigma_x/\epsilon_0\epsilon_R)\pm j\{\sqrt{1/(\epsilon_0\epsilon_R\mu_0\mu_R)}\ (k^R+jk^I)\ \}$ can be expressed as

$$s = -\frac{\sigma_x}{\epsilon_0 \epsilon_R} \pm j \left\{ \sqrt{\frac{\left[(k^R)^2 + (k^I)^2 \right]}{\epsilon_0 \epsilon_R \mu_0 \mu_R}} \exp \left[j \tan^{-1} \left(\frac{k^I}{k^R} \right) \right] \right\}, \quad (k^R \neq 0).$$
 (IV.7)

In the above expression, one of the two roots gives a positive real value if the following condition is satisfied:

$$\sqrt{\frac{[(k^R)^2 + (k^I)^2]}{\varepsilon_0 \varepsilon_R \mu_0 \mu_R}} \sin \left[\tan^{-1} \left(\frac{k^I}{k^R} \right) \right] > \frac{\sigma_x}{\varepsilon_0 \varepsilon_R}$$
(IV.8)

or

$$k^{T} > \sqrt{\frac{\mu_0 \mu_R}{\epsilon_0 \epsilon_R}} \sigma_x$$
 (IV.9)

Hence, the PML system becomes unstable if the above condition is met for the case $\sigma_x = \sigma_y$.

The stability analysis of TE_z waves in corner regions results in the same stability condition as for TM_z waves.

V. CONCLUSIONS

Starting with unsplit-field uniaxial PML formulation in the frequency domain, Maxwell's equations are cast into a set of first order differential equations in time. Then, using the Laplace and Fourier transforms, the characteristic equation of a system is obtained and investigated for its dynamic stability.

From stability analysis, we find that it is essential for the transverse field gradients to be present at all times in order to stabilize PML calculations. In fact, in the absence of transverse field gradients the PML method becomes unstable with the axial field components growing linearly in time.

REFERENCES:

- 1. Abarbanel, S., and D. Gottlieb, "A mathematical analysis of the PML method," J. Computational Physics, Vol. 134, pp. 357-363, 1997.
- 2. Nehrbass, J. W., J. F. Lee and R. Lee, "Stability analysis for perfectly matched layered absorbers," Electromagnetics, Vol. 16, pp. 385-397, 1996.
- 3. Petropoulos, P. G., L. Zhao, and A. C. Cangellaris, "A reflectionless sponge layer absorbing boundary condition for the solution of Maxwell's equations with higher-order staggered finite difference schemes," J. Computational Physics, Vol. 139, pp. 184-208, 1998.
- 4. Berenger, J. P., "A perfect matched layer for the absorption of electromagnetic waves," J. Computational Physics, Vol. 114, pp. 185-200, 1994.
- 5. Sacks, Z. S., D. M. Kingsland, R. Lee and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas and Propagation, Vol. 43, pp. 1460-1463, 1995.
- 6. Taflove, A., Advances in Computational Electromagnetics, The Finite-Difference Time-Domain Method, Chapter 4, Artech House Publishers, 1998.
- Wolfram, S., The MATHEMATICA Book, Fourth Edition, Wolfram Media/Cambridge University Press, 1999.
- 8. Cohen, D., College algebra, Fourth Edition, West Publishing Company, 1998.

Appendix A

A proof to show that the real parts of the roots of the polynomial, $S^2[(1+S)^2+a]+(1+S)^2b=0$ with positive real coefficients a and b, are all negative.

Theorem:

Consider the equation

$$S^{2}[(S+1)^{2}+a]+(S+1)^{2}b=0, S \in \mathbb{C}$$
 (A.1)

where a, b > 0. Then

- (i) Eq. (A.1) has no real solutions;
- (ii) If $S_i = \alpha_i + j\beta_i$, i = 1, 2, 3, 4 ($\beta_i \neq 0$) are the roots of Eq. (A.1) then $\alpha_i < 0$, i = 1, 2, 3, 4.

Proof:

(i) Rewrite Eq. (A.1) as

$$S^{2}[(S+1)^{2}+a] = -(S+1)^{2}b, \qquad (A.2)$$

and note that, since a, b > 0, if $S \in \mathbb{R} \setminus \{-1,0\}$ then the LHS of Eq. (A.2) > 0 and the RHS of Eq. (A.2) < 0, a contradiction; while if S = -1 then the LHS of Eq. (A.2) > 0 and the RHS of Eq. (A.2) = 0 and if S = 0 then the LHS of Eq. (A.2) = 0 and the RHS of Eq. (A.2) < 0, also contradictions. Thus, if S satisfies Eq. (A.1) then $S \notin \mathbb{R}$. Further, all four solutions are of the form $S = \alpha + \beta$, α , $\beta \in \mathbb{R}$, $\beta \neq 0$.

(ii) If $S = \alpha + j\beta$ is any solution of Eq. (A.1) then

$$(\alpha + j\beta)^{2}[(\alpha + j\beta + 1)^{2} + a] + (\alpha + j\beta + 1)^{2}b = 0.$$
(A.3)

Expanding and equating real and imaginary parts of Eq. (A.3) to zero gives

$$(\alpha^2 - \beta^2)^2 - 4\alpha^2\beta^2 + 2[\alpha(\alpha^2 - \beta^2) - 2\alpha\beta^2] + (1 + a + b)(\alpha^2 - \beta^2) + 2\alpha b + b = 0$$
(A.4)

and

$$\beta[2\alpha(\alpha^2 - \beta^2) + 2\alpha^2 + (\alpha^2 - \beta^2) + (1 + a + b)\alpha + b] = 0.$$
(A.5)

In Eq. (A.5) the term in brackets must be equal to zero since, otherwise, $\beta = 0$, which is not possible since $S \notin \mathbb{R}$. Rewritten the term results in

$$-(2\alpha+1)\beta^{2} + 2\alpha^{3} + 3\alpha^{2} + (1+a+b)\alpha + b = 0.$$
 (A.6)

If $\alpha = -\frac{1}{2}$ then we are done (since then $\alpha < 0$). Otherwise, if $\alpha \neq -\frac{1}{2}$ then Eq. (A.6) gives

$$\beta^2 = \frac{1}{2\alpha + 1} [2\alpha^3 + 3\alpha^2 + (1 + a + b)\alpha + b] \tag{A.7}$$

and

$$\beta^2 - \alpha^2 = \frac{1}{2\alpha + 1} [2\alpha^2 + (1 + a + b)\alpha + b]. \tag{A.8}$$

Substituting Eqs. (A.7) and (A.8) into Eq. (A.4) and simplifying leads to

$$16\alpha^{6} + 48\alpha^{5} + 8(7+a+b)\alpha^{4} + 16(2+a+b)\alpha^{3} + [(1+a+b)^{2} + 8(1+a+b)]\alpha^{2} + (1+a+b)^{2}\alpha + ab = 0.$$
 (A.9)

Since a, b > 0 then all coefficients in Eq. (A.9) are > 0; thus, by Descartes's Rule of Signs [8], Eq. (A.9) has no positive roots. Further, zero is not a root of Eq. (A.9). Hence, all real roots of Eq. (A.9) are < 0. Finally, α_i , i = 1, 2, 3, 4 must be among the solutions of Eq. (A.9) so $\alpha_i < 0$, i = 1, 2, 3, 4.

Appendix B

Four complex roots of the polynomial, $S^4 + a S^3 + b S^2 + c S + d = 0$, with complex coefficients a, b, c and d are given by [7]

$$S_{1} = -\frac{a}{4} - \frac{1}{2} \sqrt{\frac{a^{2}}{4} - \frac{2b}{3} + \Pi} - \frac{1}{2} \sqrt{\frac{a^{2}}{2} - \frac{4b}{3} - \Pi} - \frac{(-a^{3} + 4ab - 8c)}{4\sqrt{\frac{a^{2}}{4} - \frac{2b}{3} + \Pi}}},$$
(B.1)

$$S_{2} = -\frac{a}{4} - \frac{1}{2} \sqrt{\frac{a^{2}}{4} - \frac{2b}{3} + \Pi} + \frac{1}{2} \sqrt{\frac{a^{2}}{2} - \frac{4b}{3} - \Pi - \frac{(-a^{3} + 4ab - 8c)}{4\sqrt{\frac{a^{2}}{4} - \frac{2b}{3} + \Pi}}},$$
(B.2)

$$S_{3} = -\frac{a}{4} + \frac{1}{2} \sqrt{\frac{a^{2}}{4} - \frac{2b}{3} + \Pi} - \frac{1}{2} \sqrt{\frac{a^{2}}{2} - \frac{4b}{3} - \Pi + \frac{(-a^{3} + 4ab - 8c)}{4\sqrt{\frac{a^{2}}{4} - \frac{2b}{3} + \Pi}}},$$
(B.3)

$$S_4 = -\frac{a}{4} + \frac{1}{2} \sqrt{\frac{a^2}{4} - \frac{2b}{3} + \Pi} + \frac{1}{2} \sqrt{\frac{a^2}{2} - \frac{4b}{3} - \Pi + \frac{(-a^3 + 4ab - 8c)}{4\sqrt{\frac{a^2}{4} - \frac{2b}{3} + \Pi}}},$$
(B.4)

where

$$\Pi = \frac{(2^{1/3})\Phi}{3\Psi} + \frac{\Psi}{3(2^{1/3})},\tag{B.5}$$

$$\Phi = b^2 - 3ac + 12d \,, \tag{B.6}$$

$$\Psi = \left(\Gamma + \sqrt{-4\Phi^3 + \Gamma^2}\right)^{1/3},\tag{B.7}$$

$$\Gamma = 2b^3 - 9abc + 27c^2 + 27a^2d - 72bd.$$
(B.8)

DISTRIBUTION LIST

AUL/LSE Bldg 1405 - 600 Chennault Circle Maxwell AFB, AL 36112-6424	1 cy
DTIC/OCP 8725 John J. Kingman Rd, Suite 0944 Ft Belvoir, VA 22060-6218	2 cys
AFSAA/SAI 1580 Air Force Pentagon Washington, DC 20330-1580	1 cy
AFRL/VSIL Kirtland AFB, NM 87117-5776	2 cys
AFRL/VSIH Kirtland AFB, NM 87117-5776	1 cy
AFRL/DE/Dr Hogge Kirtland AFB, NM 87117-5776	1 cy
AFRL/DEPE/Dr D. Dietz Kirtland AFB, NM 87117-5776	1 cys
AFRL/DEPE/Dr A. Greenwood Kirtland AFB, NM 87117-5776	1 cys
AFRL/DEPE/Mr E. Baca Kirtland AFB, NM 87117-5776	1 cys
Official Record Copy AFRL/DEPE/Dr S. J. Yakura Kirtland AFB, NM 87117-5776	4 cys